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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3667 

WING-BODY COMBINATIONS WITH CERTAIN GEOMETRIC 

RESTRAINTS HAVING LOW ZERO-LIFT WAVE DRAG 

AT LOW SUPERSONIC MACH NUMBERS 

By Harvard Lomax 

SUMMARY 

Several variational problems involving optimum wing and body combina- 
tions having minimum wave drags for different kinds of geometrical restraints 
are analyzed. Particular attention is paid to the effect on the wave drag 
of shortening the fuselage and, for slender axially symmetric bodies, the 
effect of fixing the fuselage diameter at several points or even of fixing 
whole portions of its shape. 

INTRODUCTION 

Recently several authors have used linearized theory to study the 
wave drag of wing-body combinations traveling at supersonic speeds (see, 
e.g., refs. 1 to 5). These studies have clearly demonstrated the impor- 
tance of finding the wave drag of a whole airplane rather than the separate 
wave drags of its various parts (wings, fuselages, etc.), since the magni- 
tude of the interference terms can predominate.  In effect, this means 
that various optimization problems for bodies - such as the problem of 
finding the body shape having a minimum wave drag for a given volume - 
should be re-examined when interfering wings or other bodies are in the 
same flow field.  In many cases the solution to the new problem differs 
from the body-alone problem only in interpretation. 

The purpose of this report is to study minimum wave-drag combina- 
tions which satisfy a few of the many possible geometric restraints per- 
tinent to the interests of airplane designers. An attempt has been made 
to analyze the various problems in a unified manner so that extensions 
to other kinds of restraints can be deduced. 
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LIST OF IMPORTANT SYMBOLS 

A        aspect ratio 

a0(x)     source distribution equivalent to wing in sense defined by- 
equation (3) 

a^x)     multipole distribution of order n 

D        wave drag 

Da       portion of drag due to all the nth order multipoles for n>0 

Dw^Iwb^Db See equation (8). 

Dre-      additional drag resulting from restraint (See eq. (ll).) 

J0,Ji     restraints defined in equations (I9) 

L0' + L0   distance between apexes on x axis of forecone and aftercone 
enclosing wing (See sketch (c).) 

l0' +Z0   length of basic body 

ii' + Zi  .length of modification to basic body 

M        Mach number 

„2 
PQUQ 

^ "I- 
R        average body radius 

Sf(x)     fuselage area in cross section normal to the free stream 

Sw(x,0)   normal (to free stream) projection of wing area in section cut 
by plane xx =  x + ßyx cos 9  (See sketch (b).) 

Uo       speed of free stream 

V        volume 

x,y,z Cartesian coordinate system (See sketch (a)..) 

a0(x)     source distribution representing the fuselage modifications 
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ß N/M
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0 polar coordinate  (1 

Po free-stream density- 

0 See equation (17)• 

9 velocity' potential 

BASIC THEORY AND ASSUMPTIONS 

Basic Theory- 

Many of the discussions and derivations contained in the following 
are carried out on the assumption that the reader is familiar with the 
concepts presented in reference k  which should be considered as a first 
part to this report. In particular, 
an acquaintance with the solutions 
to the wave equation referred to as 
"multipoles" is assumed, together 
with Hayes' invariance principle and 
the consequent multipole distribu- 
tions equivalent to a wing in the 
sense that both induce the same 
momentum spectrum at infinity. 

The entire analysis used herein 
is based on the assumptions and ideall 
zations necessary to develop the 
linearized equation for the velocity 
potential, q>, in supersonic flow, 
namely 

a* 

ß2cpvx - ?: yy f'zz = 0 (1) 

where ß2 = M2 - 1 and the reference 
coordinate system1 is shown in 
sketch (a). The analysis is further 
restricted to the solution of prob- 
lems involving a given uncambered V. 

Sketch (a) 
xIt should be stressed that the 

stream direction (wind axes).  

x axis is parallel to the free- 
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and untwisted wing mounted centrally on a vertically symmetrical fuse- 
lage, the entire configuration being at zero angle of attack. 

Additional Assumptions 

We now make the two additional assumptions:  one, the value of ßA, 
where A is the wing aspect ratio, is small; and two, the value of ßR/Le, 
where R is the average body radius and 2Le is the distance along the 
x axis in which the multipole strengths differ significantly from zero, 
is small. 

One can evaluate the significance of these assumptions by studying 
their implications relative to the source and multipole distributions 
used to simulate the wing and body. Suppose, for example, a group of 
multipoles are placed along the body center line, their strengths, Cn(x), 
being fixed by the condition that a circular cylinder in the vicinity of 
the body is a stream surface when the velocity field induced by these 
multipoles is combined with the velocity field induced by the source 
sheets representing the given wing. With the assumptions of small ßA 
and ßR/Le mentioned above, the Cn's, for n greater than 0, can be 
shown (see, e.g., ref. k)  to have a negligible effect on the wave drag. 
Hence, all the multipoles (for n > 0) that combine with the wing to make 
a circular cylinder a stream surface and any additional multipoles (for 
n > O) added to make the body have mild distortions from such a surface 
are negligible in evaluating the wave drag. Therefore, under the assump- 
tions mentioned above, out of all the singularities distributed along the 
body axis, it is necessary, in studying the wave drag, to consider only 
the sources. 

With the restrictions to small values of ßR/Le and mild body dis- 
tortion (see Ward, ref. 6, for a discussion of orders of magnitude), 
slender-body theory can be used to calculate the body shape, and on the 
basis of this theory one can show (see ref. k,  Appendix B) that Sf(x), 
the body cross-sectional area measured normal to the free stream, is 
completely determined by the axial source distribution alone. Hence, if 
only the exposed panels of the wing are used to calculate the Cn's, CQ 
is negligible and the entire axial source distribution a0(x) is related 
to the geometrical properties of the body by the relation 

a°(x) = Uo ^f = uoSf,(x) (2) 
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The Wing Equivalent Source Distribution and the 
Optimum Cancellation Sources 

Let the given wing lie in the zx  = 0 plane. According to Hayes1 

theorem (ref. 7), the wing equivalent source distribution [a0(x)]w is 
obtained by accumulating on the x'i axis, at a distance x from the 
origin, all the wing sources intercepted by the line xx  = x + ßyxcos 0, 
and then, for a fixed x, averaging these values as 0 varies from 0 
to 2jt. Thus, using thin-airfoil theory to relate the planar source sheet 
to wing geometry, one finds 

ia0(x) = ±-    /   Sw'(x,e)d0 (3) 

where Sw'(x,0) = ö/öx[Sw(x,e)] and 
Sw(x,0) is the normal (to the x axis) 
projection of the wing cross-sectional 
area intercepted by the plane2 

Xi = x + ßyxcos 0 as shown in 
sketch (b). Without the addition of 
further restraints, the optimum source 
distribution along the xi axis is 
that which just cancels the wing 
equivalent source distribution. Fur- 
ther, this can be interpreted directly 
in terms of both fuselage and wing 
geometry by means of equations (2) 
and (3). Thus, with no further 
restraints, the best fuselage shaping, 
for a wing-body combination satisfying 
the assumptions discussed above, satis- 
fies the equation 

Sf'(x) 
1_ 
2it 

2Jt 

Sw'(x,0)d0 00 

and has any reasonably smooth cross- 
sectional form. Notice that the total 

S(x, 0) = Norm a I projection 
of   wing area along A A 

V x+ß^cosO 

Sketch (b) 

2The true oblique plane is given by the equation 

x± = x + ßy^cos 0 + ßZiSin 0 

but, to be consistent with the assumptions basic to linearized theory, 
the variation with zi is neglected.  
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volume taken out of the fuselage is exactly equal to the total volume of 
the exposed portion of the wing. Hence, the total volume of the modified 
combination is the same as that of the original smooth cylinder. 

The Drag 

The total wave drag of a system can he expressed in terms of its 
actual or equivalent multipole distributions as 

00 

D = 2D0 + )    D^ (5) 

.1 

where DQ is the drag caused by the nth order multipoles an(x) and is 
given by the equation 

•^o    ^o 
%     ß2n  " r a   r *   (n+i)/ \ (n+i), .   1      1 
q ktfJ2J J      dx2an (xi)an (x2)ln lxx-xa-1,  n = 0,1,2. . 

0    -L0* -L0' 

(6) 
,      (n+i), N ,^ ,^ .n+i , , 

where an    (x) represents (d/dx)  an(x). Under the assumptions 
00 

given above, the magnitude of E Ifo is small. Let us designate it by 

De, so that, in general, 

D = 2D0 + De (7) 

On the other hand, the total wave drag of a system composed of the 
combination of a wing and a body can also be written symbolically as 

D = IV + 2IVb + Dfa ■ (8) 

where 

Dw = drag of the wing alone 

Db = drag of the body alone 

IVb = interference drag 
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The various components of wave drag defined in equations (7) and (8) 
help one to evaluate more readily the drag reductions that can be realized 
from'appropriate fuselage formations. Thus, if the fuselage shape satis- 
fies equation (k), the total wave drag of the combination under the assump- 
tions that ßA and ßR/Le are small can be written either as 

D = De {9) 

or as 

D = IV - Db (10)  ' 

If, in finding the fuselage shape, 

(a) the multipoles representing a wing and a body flying separately 
are assumed to represent the same wing and body when combined (i.e., 
the shape fields can be superimposed), 

(b) the multipoles representing the fuselage are equal in magnitude 
but opposite in sign to the wing equivalent multipoles, 

then equation (lO) holds without the assumption of small ßA and ßR/Le • 

In subsequent problems we will discuss the effects on the wave drag 
and fuselage area distribution of adding certain additional restraints to 
the body geometry. The addition of such restraints may or may not change 
the relation given by equation (lO), but they must always add a term to 
equation (9) so that 

(ID 
D = De + Dre 

Dre > 0 

WINGS CENTRALLY MOUNTED ON SLENDER QUASI-CYLINDERS 

This section is devoted to the solution of two problems involving a 
given uncambered and untwisted wing mounted centrally at zero angle of 
attack on a tube that is cylindrical forward of some point ahead of the 
wing. The problems are, in both cases, to find the area distribution of 
the fuselage behind the cylindrical portion that will minimize the wave 
drag of the combination. 
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Shortening the Fuselage 

Remembering the assumptions listed at the beginning of this section, 
let us consider the following problem: 

(i) Given a wing and a slender fuselage having the same normal 
cross-sectional area in all planes ahead of the plane x= -L0* 
(see sketch (c)), what is the optimum fuselage area distribution 
behind the plane x = -LQ' if the fuselage must end at the plane 
x = Zo? 

Of course, if l0  > L0 (i.e., the 
body modification can extend over the 
entire range enclosed by the forecone 
and aftercone enclosing the wing), 
the solution is already given by equa- 
tion (k).    Hence, in the following, 
^o ^ -^o* 

/    For simplicity of notations, 
let <x0(x) represent the sources 
along the fuselage center line and 
aQ(x) represent the wing equivalent 

,N source distribution. Then, according 
to equation (6) 

T=ri^7  f    ^/ dx2[a0.(xl) + 
"w      T T  ' 

cc0 ' (xi) ] [aQ ' (x2)+a0 '(x2) ]ln|xi-x2| 

(12) 

Sketch  (c) 

where from the conditions stated in the problem and the geometric inter- 
pretation to the fuselage sources given by equation (2), an(x) is zero 
for values of x outside the interval3  ' * ' -L0' < x < Z0, 

It is necessary, for equation (6) to be valid, that OOC-LQ*) and 
0o(l0) be zero. This implies that oc^x) must be continuous and if the 
body shape is given by equation (2), this, in turn, means that the stream- 
wise gradient of body cross-sectional area must be continuous. It was 
pointed out in reference k  that a0(-L0') and a0(L0) will both be zero, if 
the wing has no blunt edges along which the normal component of the free- 
stream Mach number is unity or greater. 
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Consider now a variation of equation (12) for a fixed a0(x) in the 
interval -L0' < x < L0 and a free variation of a0(x) in the sub- 

interval -L0* < x < l0.     There results 

- 5D0 = 
Wo2   --L, 

/       dxx&aoXxx)     /       a0'(x2)ln |xi- x2|   dx2 + 

l_-J-'0 

/       ao'(x2)ln |xx - x2| dx2 = 0 

Integrate once by parts with respect to xi (since the variations 6a0(-L0') 
and 5a0(l0) must be zero).  Then, by the fundamental lemma of the calculus 
of variations, the bracketed term must be zero for . -L0' < xx < Z0 

an^- one 

finds the condition 

["       aQ'(x2)dx£ 

J,       Xl-x2 
Lo' 

a'(x2)dx2 

Xi- x2 

= 0; -L'  <xx <l o    ^ Ai J:  bo (13) 

Equation (13) is an integral equation which can be inverted (by methods 
such as those outlined in ref. 8). Inverting, integrating once with 
respect to x, and expressing a0(x) and a0(x) by means of equations (2) 
and (3), respectively, one finds 

"''«--Si, ■S\Hx,eHe^°-*)(h°+x) 
2itc 

2Jt 

dxi d0 
Sw'^i^e) 

(x1-x)N/(L0' + x1)(x1-Z0) 
(HO 

which gives the optimum fuselage area distribution under the conditions 
and assumptions posed. 

The wave drag of the combination represented by.equation (lU) can be 
expressed either in the terms defined in equation (8) or (ll). Let us 
first consider the form given by equation (8). If the expression for. the 
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drag of an nth order multipole distribution is integrated once by- 
parts, there results since an(

n+1)(-L0') = an(
n+1)(L0) = 0 

Dn   ß2n   p°   f^ r
Lo B (n+i), 

d J ,     X1-X2''' 1   l*rfU' 0   -V -^ 

Using this expression, one can readily show that equation (12) yields 

^ o -^o 
1 p (     v.        f       a   '(x2)dx2 

^itU0      «J       , J xi-x2 _Jjo -L0 

so that, by equation (13) 

^ 1 /"  ' ,„  Xj__     p       cc0»(x2)dx2 _      'DJ, 
—   -   -   7-7-2"      / OfcCxJdX!    /   

T   7 - T   1       -J. - x2     ■ 1 
_ljo "Lo 

Hence, for any combination satisfying equation (lU), once again 

D = IV - Db 

On the other hand, Dre, the increase in drag caused by shortening 
the fuselage can also be obtained. •.■ Integrating equation (12) by parts, 
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one has (note Dre = 2DQ) 

Dre -  3-   r       r„ t    \ ^      1  11  f   [a0'(x2) + a^'(xa)](b:a 

Combined with equation (l3).> this becomes 

Pre 

q. 
 =■ /  a0(xi)dxi / 

a0'(x2) + cco'Cxa) 
dx; 

Xi- x2 

The derivative of equation (ik)  with respect to x gives 

a0'(x)  + a0'(x)  = 

J0 .—_ _ _— 
1    a   '(xiWQV +xi)(x!- lQ) 

n*J (l0 -x)(L0' + x) X --Xi 
dxi; 

-Lo'  <* < 10 

so 

'li- re 
<1        2nU, 

^-2     /      a0(xi)dxi 
aQ'(x2)dx£ 

xi -x2 

dx? 

JO /- ■—;—■■  
1   a0'(x3)N/(L0'+x3)(x3-Z0) 

-L, 
,   (xi -x2) s] (L0' + x2)(Z0- x2) 

dx; 
X2   -   X3 

which reduces to 

D. re 1 

q.        2nUr 

a0(x1)dx1 

a0'(x2)   /  (LQ' + x2)(x2-Z0) 

7      xi-x2  V    (L0' +X1)(XI- l0) 
o 

dx2     (15a) 
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or, alternately, 

Pre 

2«ur 
a0'(xi)a0'(x2) 

In .      |xi-xg|(Z0 + Lof) 
r /. , ,        ==—,  dxidx2      (15b) 
W(x1 + L0')(x2.Z0)+Nffe7Lo')(x1.g]2 

Original 
cylinder 

S/1 Sg ,and 
wing all fixed. 

Sketch (d) 

Constrained Fuselage Areas 

Another class of problems is that 
in which the magnitude of the fuselage 
area is fixed at various points.  Sup- 
pose, for example, that a fuselage 
shaped according to equation (k)  had 
in some region a cross-sectional area 
too small to be acceptable for some 
practical purpose. The question is, 
then, what\is'the best shape for given 
values of 'minimum fuselage cross- 
section area at given planes and what 
is the penalty in wave drag caused by 
the added constraints? Before consid- 
ering the general case of an arbitrary 
number of restraints, let us first con- 
sider the simple problem: 

(ii) Given a wing, what (under the various assumptions given 
above) is the area distribution of the adjoining fuselage which 
has a prescribed area at three given stations (the initial, the 
final, and an intermediate station x = &xy see sketch (d)) and 
yields a minimum wave drag for the combination? 

As before, let a0(x) represent the wing equivalent source distribu- 
tion. Then the drag caused by the restraints can be written 

Ln 

-q^ = i^2 J        [a0(xi) + U0Sf ' (xx) ]dXi J 
~Ln -It 

J° a0'(x2) + UoSf"(x2) 

Xi ■ - x2 

dx2 

(16) 
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where Sf(x) is the unknown fuselage area to be optimized. For simplic- 
ity, replace the unknown Sf(x) by a(x) where 

X 2JT 

a(x) =J    ^IL dl + Sf(x) = ±J .   Sw(x,0)d0 + Sf(x) 

a(-L0) = S0 

(T(L0) = S2 

> (17) 

Let 

a0(x) = c(x);   -Lp < x < di 

o±(x)  = a(x);    di < x < L0 

(18) 

and the restraints on the fuselage area give the relations 

/ 
-Lr 

0o'(x)dx = 

an 

Si - S0 + ^J     Sv(d1,0)d0 = Jr (19a) 

I ai'(x)dx = 

2Jt 

- S - -i- /   Sw(di,0)d0 = Ji - J0        (!9b) 

where J0 and Jx are constants fixed by the- given constraints, notice 

Ji = (s2 - S0) (19c) 

so the constant Jx    is a measure of the difference between the initial 
and final areas. 

Using the usual variational techniques,-we can write, for the quan- 
tity to be minimized, . 

~J-Ti ä -1 
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or 

^o 

kit 
/        Oo'CxiJdXi    / 

■dl 0o"(x2)dx2   ^   PL° gl"(x2)dx2 + A 

J Xi-Xp c Xi -x2 

L_   uO 

Jdl J Xl-X2 J Xi-X2 

By taking the variation and satisfying the conditions at the end points, 
one obtains the two simultaneous integral equations 

r x a0"(x2)dx2 + rL° gl"(x2)dx2 

J T xi-x2 J, xx -: 

A, o. 
2 ' 

-L0 < xi < di 

>  (20) 

rdla0"(x2)dx2^ rLv 
J Xi-X2 «X X 

(x2)dx£ 

Xi-X2 

Ai 
"ö-;        di < xi < Lc 

The set of equations (20) is identical to that analyzed "by Adams 
(ref. 9)>  page ik,  for bodies of revolution with fixed areas at the 
initial, final, and an intermediate section. In the interest of subse- 
quent generalization, however, we will consider its solution in the 
following way: First write the equations (20) in the equivalent form 

I g"(x2)dx2 
Xi -x2 

-L0 < xi < di 

= < (21) 

Ai 
—;   di < xi < L0 
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One can show that 

„ .  .   A + Bx2        _x Ln - d.!X2 
CT"(X2) = ,       - Cicosh x -Q■---  ■- 

N/L0
2
 - x2

2 L0|x2- dx| 
(22) 

is the solution to the integral equation (where A, B, and Ci are con- 
stants) since 

-L. 

a"(x2)dx2 
= < 

' 

r                                        /rl   \ "1 
-Jt B-dcos-^jiJJ. 

-3T _B + C1co.-i(J)] 

-L0 < xi < dj 

; dx < xi < L0 

(23) 

which satisfies equation (21). The constraints can now be satisfied hy 
means of the equations 

a'(x) =  /     a"(x1)dx1 = A cos-1^J - %J~L, 02-x2     + 

(dx - x)cosh 
_1   L0   - djx 

L0|x- di| 
VLo2-dxa cos-1^ 

and 
(2h) 

a(x)- S0 = A x cos" -i(^WLo2-x2   -|   x^L0
2-x2 +L0

2coS-i(^£) 

£1 
2 

2„„„-u-1 -"O (di- x)   cosh 
L^ ~ dx* 
L0|x- di| 

>/Lo2-cLi2(di - 2x)cos-ifgJ 

7(Lo2-di2)(L0
2-x2) (25) 
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Since    a'(-L0)  = ff(L0)  = 0 

A = Ci N/L0
2
 - di2 

and 

Jo = diN/Lo2 - dx
2 + LQ^OS-M^ 

-d- 
+  ~ ^L0

2 - d!2 
d1cos-1('-j-i ] + 

VL0
2-d!2 

Ji =  - § L0
2* + ^ rtdi^Lo2^!2 

Solving for    Ci and B, ve find 

B = 
rT~       ,   213/2   l*dlJ0 "   Jl dicos"

1^) +^L0
2-d1

2 I 

ci =  :—— -<jdjn^Jn - Ji 
*{LoZ - if]*   *     ° ° 

dx Ao2 - di2 + L0
2cos-i(-^ r)]} 

From equation (25) the fuselage cross-sectional area can be written 



3A 
MCA TN 3667 17 

x 
1 
H 

d 
w 

H 
d 

CM 
O 

M3 a3 
CV1 

CD 

P 

C— 
OJ 

CD 
d 
CD 

X 

CO* 

H 
d 

H 
-d 

I 

X 
o 

(S 

o 
CQ 

CO 

H 
I 

M 
O 
o 

CM 

-d 
1 

X 

CM 
O 

h3 

CM 
H 

d 

CM 
o 

d 
I I 

CM 

H 
d 

1 

X 

CO 

a o 
•H 
-P 

I 
CD 

Ö 
•H 

d 
CD 
Ö 

•H 
CH 
CD 
d 

CO 

CD 
Ö 
o 

I 
Ü 

bo 
cö 

CD 
Ü. 
Ö 
CD 
*H 
CD 

<M 

0) 

-g 
•rl 

d 

H    O 
.d|^ 

CQ 

H 
Ü 

+ 

CQ 

I 
o 

d + 
O 
£> .£1" 

•s 

bO 1 
Ö 

> -£l" 
<D 

+3    W 

II 

fi |a< 
•r) 

CH 
0 bo 

CO 

p£ 
CD   0) 
p t> 

H 
H 
CO 
P 
O 
P 

CO 
•H 

CD 

O 

Ö 
o 

•H 

I 
CD 

<D 

EH 

<D 
S> 
O 

■3 

CD 
> 

•H 
bO 

CD 
U 
CO 

o 
d a 

CO 

CD 

(D 

>d 

CM 
O 

H 
<d 

^° 
OJ 

CM 

CM 
O 

CM 
H 

d 
1 

CM 
O 



18 WÄCA TN 3667 

If the additional specification is made that the initial and final 
areas are the same, the solution simplifies considerably, since, for such 
cases, Jx =  0 and equations (26) and (27) reduce to 

/2Jt 

Sw(x,0)d0 + 
1 

(L0
2-di2)2L 

1 r2* 
Si-So+2^J   Sw(di,0)d9 

and 

^o2-^)J(L^-X^(L0
2-äx2)   -^(x-di^coBh-iisll^l 

■  L0|x-di| 

(28) 

R _ 5ü   *V     2jtL' 
2  ., 2x2 111   (L0
2-äx2) 

(Si-S0) Si-S0 + 
2jt 

r.2lT 

J  Sw(d1,0)d0 (29a) 

fire 

q. 

rtL, 

a^-d^n. 
1  r2It 

S1-S0 + 2^1      Sw(di,0)d0 (29b) 

Often the exact statement of the restraint is that S(x) shall not 
be less than Si at x = di- In such cases care must be used in applying 
equations (26) and (27) or (28) and (29), since they are only valid when 
the fuselage cross-sectional area at dx is exactly Sx. If such is the 
case, equations (26) and (28) give the optimum body shape only if J0 > 0 
that is, only if — ' 

2Jt 

-s° " h. f  'Swtei'0)^ 

Otherwise the optimum variation of area is given by equation (k) 
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Next let us generalize the analysis leading to equations (26) and (27) 
by considering the following problem: 

(iii) Given a wing, what is the area distribution of the adjoin- 
ing fuselage which has prescribed areas at n + 1 stations (includ- 
ing the initial and final ones fixed by the Mach forecone and 
aftercone enveloping the wing, see sketch (e)) and yields a mini- 
mum wave drag for the combination? 

By analogy with equation (22), the 0-*. Original 
integral equation for a"(x) (where cr(x) Modified        /\   Cylindej 
is defined by eq. (17)) that must be      body- N     ^^ 
satisfied for a minimum wave drag can be 
written at once in the form 

g"(x2)dx2 

xi - x2 
M.'>   dj[ < Xi < d: i+i> 

i = 0,1* •   •   -, n    (30) 

where d0 = -L0 and dn+1 = L0. 
quantity 

The 

n 

V '        ' 2 _ x  2 L> L0|x2 -di| -XsT 

(3D 

Sn + /'and 

wing all 
r*      fixed. 

Sketch (e) 

is a solution to equation (30) since it yields 

ü"(x2)dx2 

Xi -X2 

V-l 

■= -rt 

n 

B + )  Cicos" i/-di Cicos"^^ 

in which 

dv_! < Xi < dv, v = 1,2, . . ., n + 1 (32) 

n 

Ic—(© 
n+i 
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Further, it is apparent from equations (2k)  and (25) that, with the con- 
ditions o'(-L0) =o-'(L0) = 0 

n 

*(x)  = -B7L0
2
-X

2
 +   \  Ci(di -x)cosh~ 1

  L0
2 - xdj 

Lolx"di| 
(33) 

and 

2it 

Sf(x) =s0 -i J   S^e'jdö -| 7        2 P P L0   - x    + L0 cos 
Lo. 

2    ' 

|^i{(%-^2—-lL°"xd x)  cosh" 
1=1 

Lolx-diT^^7^  ^-"(^V^17^ l)*^?7^"]} 
(3M 

The wave drag due to the restraints can be obtained by using equa- 
tions (32) and (16). Thus 

Pre 
1 

n 

= ^B(ao-*n+i)+^ >  Ci nai-a0cOS-
1[—)-an+1 cos 

■ i/-dH 

1=1 
JO/ J 

(35a) 

or in terms of the components defined in equation (8) 

D = Dj, 
1      q. £ + B(S0 

n 

Sn+i)  + )    C itSi   - S°COS'\ltJ- 
,-i/ di Sn+icos-ll—i 

1=1 

(35b) 

where    a± = o(d,±).    Notice    crn   = sf M.,.    »oi«    cr0   = S0 and an+1 = Sn+1,  so when    S0 = Sn+1, 

n 
D 're      jt 
— = 2   / Ci(ai  - so) (35c) 

1=1 
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or 

(35d) 

Finally, using the known values of Sf(x) at dv, v = 0, 1, 
n + 1, one obtains the n + 1, simultaneous equations 

2Jt 

(sv - s0) = - i I   s^a^ejae - | dWL0
2-dv

2 + L/COS-
1
^) 

n 
Ln   - dvd 1 V1       {, \2 ,  üo   " u-vu-l 

2 IC4(ai-dv)COSh     Ljl^d 
- _ ■S/LQ   - di" dicos--1-^—-t. ) + 1/ -u-v 

JLQ2 - dv
2    i-; v = 1,2,   •   .   ., n + 1 (36) 

which determine the n + 1 constants B, Ci, C2, • • • , Cn. These, in 
turn, fix the shape, through equation (3*0, and the wave drag,4 through 
equations (35)• 

WINGS CENTRALLY MOUNTED ON SLENDER CLOSED BODIES OF REVOLUTION 

In the preceding section the interference between the central portion 
of the airplane and its nose and tail regions was neglected. In this por- 
tion we will consider the entire fuselage, assuming, first, it is a slender 
closed body and, second, it can be calculated in the presence of the wing, 
using the same postulates given in the previous section under "Basic Theory 
and Assumptions." 

It has come to the author's attention, through a private communica- 
tion, that W. T. Lord has obtained a solution similar to the above and is 
using it to calculate the drag of bodies of revolution having their areas 
specified at a given number of stations. Such a method has the advantage 
of giving the lower bound to the drag.of bodies whose areas have been 
measured at a discrete number of places and, further, of giving a value 
representative of all area variations in the vicinity of the calculated 
optimum. 
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Unlimited Indentation Length, Fixed Volume 

Let us first consider the question: 

(iv) Given the wing, body length, and total volume of the com- 
bination/ what is the area distribution of the body which yields 
a minimum wave drag if the apexes of the Mach forecone and' 
aftercone enclosing the wing lie within the body (see sketch (f)) 
and the specified volume is large enough for the body to be real? 

This problem can be solved in a simple manner by means of 
the following lemma discovered by R. T. Jones, using methods 
similar to those introduced in reference 10. 

\ 
\ 

V 

Designate the closed body which has a minimum wave drag 
yv  for a fixed volume and length as a Sears-Haack body. Then the 
J total drag of a Sears-Haack body and any other wing or (slender) 
^  body entirely within the fore and after Mach cones with apexes 

at the tail and nose of the Sears-Haack body, respectively, is 
given by the equation 

Sketch (f) _  _  /,   2Vi \ 
D = DSH (* + v^ ) + Dl (37) 

where 

DSH wave dra§ of Sears-Haack body alone 

Di wave drag of second body alone 

VSH volume of Sears-Haack body 

Vi volume of second body 

A proof of this lemma can be obtained by placing the Sears-Haack 
source distribution and the wing equivalent multipole distributions (or 
the second body's equivalent multipole distribution) in equation (6). 
Since only the sources interfere, the drag can be written in the form 

q   fL°          pl°  aQ  '(x2)dx2 
D = DSH + —_  /   aQ (x1)dx1  /   —SS ;  + D      ( Q) 

-T.^ -7      xl x2 ^O Lo 

where the interference term has been integrated by parts and -L0', L0, 
and -l0,  l0    form bounds of the arbitrary and Sears-Haack source 
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distributions, a0 and a0 , respectively. As is well known 
1      SH 

IfcH      8V, SH 

1        Jt^o4 
(39) 

and 

ia       ■(■■)       8VSH2x2-*o2 (lK)) 
u0
a°sH(x) «isJTjrrgr ^ 

Placing equation (it-O) in (38) and integrating, one finds 

8qVqF
2 2   rL°        aQl(

xi) 
Älo   VSH v_L »       uo 

and since one can easily show 

Lo 
Vi = - —  J        xia0l(x1)dx1 

_Lo' 

equation (37) follows Immediately. 

Returning now to problem (iv), we see that its solution follows from 
equation (37) and the solution is, in fact, simply a Sears-Haack body 
having, at the appropriate place relative to the wing-body juncture, the 
additional area variation specified by equation (k).    This follows, since, 
if Di represents the combined drag of the wing and indentation, then Ylf 

the combined volume of the wing and indentation, is zero. Hence, the 
minimum value of D, for a given volume, is obtained when Dgjj and Di are 
independently minimized. But Dgjj is already a minimum on a volume basis 
and Di is a minimum for a given wing. Notice the location of the wing 
along the body is immaterial, provided the required indentation can be 
accommodated by the fuselage. 
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Limited Indentation Length On Sears-Baack Body, 
Fixed Volume 

Consider, next, the more difficult problem 

(v) Given a wing and Sears-Haack body of length 2l0  (long enough 
to contain the apexes of the fore and after Mach cones enclosing 
the wing), what modification of this fuselage within the length 
li' + li (and within that length only, see sketch (g)) minimizes 
the total wave drag for a given total volume? 

Basic Sears - 
Haack  body 

In order to answer this ques- 
tion, it is necessary to consider 
separately two cases; namely, the 
one in which l±*  > L0' and lx > LQ 
(i.e., the portion of the body free 
for variation contains the apexes of 
the wing's Mach cone envelope, as 
shown in sketch (f)) and the other 
in which the preceding conditions 
are not satisfied. 

Sketch (g) 

First consider the combination 
for which lx'  > LQ' and lx > L0. 
The wave drag of such a combination 
can always be calculated using equa- 
tion (37) wherein DSH is the wave 

_  drag of the basic Sears-Haack body 
Cancellation fixed by the stationary nose and tail 
Sources portions, Di is the combined wave 

drag of the wing and the (as yet 
unknown) body indentation, and Vi 
is the net difference in volume 
between Vgg, the volume of the Sears- 
Haack body, and the final volume of 
the complete configuration. Since 
the basic Sears-Haack body is fixed 
and the total volume is given, the 

entire term DSH[l + (2Vi/vSH)] is fixed and the solution to the problem 
is obviously that for which the wing equivalent sources and the source 
simulating the body indentation combine to form a Sears-Haack distribu- 
tion in the interval -li'< x < lx. 

Using equations (2) and (3) to relate the wing and body source varia- 
tions to their respective areas, we find the fuselage cross-sectional area 
can be written for  ~       " ' -l0  < x < 

Sf(x) 

^ -<■! 

8V, SH 
3*V (v2- x 2\3/2 (1+la) 
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for    -Ix  <*<lx 

Sf(x)  = 
8V, 

3nZ 

SH   (1. 2      x2\3/2      _1_ — Uo        x J ^ 

2Jt 

S^x^dö + 

128Vi        r.    ,      ■ w    •       .,3/2 
 7 [(li'  + x)(li  - x)] 

3n(l + U*)' 

(to) 

and for    Zi < x < Z0 

8V, Sf(x)   =^SK(zo2.x2) 3/2 

3äZ 
(lUc) 

The total wave drag of the wing and the fuselage, as given by equa- 
tions  (Ul)  is then 

D _ 8VSH
2 /        2VA 128VX2 

*       *Z0
4  V 

+ — 
W Jl(l1+l1*)4,      1 

(k2) 

where D6 is defined by equations (5)> (6), and (7) 

Since, äs we have been assuming, ßA is small, D6 is negligible, 
and a comparison between equations (37) and (1+2) shows that the drag of 
the combination formed by mounting two wing panels on a Sears-Haack body 
can be reduced without a change in the total volume and with a modifica- 
tion limited to the interval -Zi' < x < Zi by the difference between 
the drag of the two panels flying alone and the drag of a Sears-Haack 
body having a length equal to Zi1 + Zi, and a volume equal to the volume 
of the two panels. So long as the points x = -Zj.1 and x = Zi do not 
lie off the basic body, and so long as the required indentation can be 
accommodated, this result is independent of the wing's'fore-and-aft 
position. 

If the body modification is limited so that either Zi'< L0' or 
^1 < Lo (see sketch (g)) or both, the above results7do not apply, since, 
in such cases, the second body - in the sense defined above - cannot be 
varied for x between -Zi' and -L0' or L0 and Zi or both, and its 
drag cannot, therefore, be reduced to that of an equivalent Sears-Haack 
body.  The best modification in this case can be calculated from the 
results presented in the material immediately following. 
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Limited Indentation On Arbitrary Body- 
Fixed Volume 

Consider the question 

(vi) Given a wing, a body length, and the area distribution of 
the fore-and-aft portions of a body, what is the variation of 
area along the intermediate portion of the body which yields a 
minimum wave drag for a fixed total volume? 

Again, as in equation (17), let a(x) represent the sum of the sources 
representing the basic body and the wing equivalent source distribution, 

2jr 

ü(x) = Sf(x) + i J     Sw(x,e)d0 (*3) 

It is now convenient, however, to let a(x) be a fixed function in the 
entire interval -20' < x < lQ, see sketch (h), and let the body modifica- 

tions, which are to be optimized in 
the interval -l1<x<Z1 be repre- 
sented by ASf (x) which has the end 
conditions 

Basic body 
(not Sears - 
Haack) 

Modified 
body (modifi- 
cations limited 
to this por- 
tion of the 
body) 

ASf(-li)  =ASf(lx)  =0, 
W 

The change in volume caused by the 
body modification, AV, is given by 

AV = - / xASf'(x)dx   (1*5) 

-In 

Sketch (h) 
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The usual variational procedure leads directly to the integral 
equation 

ASf"(x2)dx2    P . a"(x2)dx2 

xi -x2 
■10' 

Xi- x2 
+ A0 + ^iX±; -l>i < x < ix     (h6) 

where A0 and "hi,  are fixed by the conditions given in equations (hk) 
and (^5) • Equation (k6)  is similar in form to equation (13) and its 
inversion can be obtained by use of methods similar to those for invert- 
ing the latter equation. Thus, the solution to equation (46) becomes 
for -li < x < l± 

ASf*(x)  = -ff'(x)  + 
Jlx

2-x2 
-o'CxxJdxi 

.1     '     (Xl -X) s/x!2 - 112 

cf'CxiJdxi kx 

li  (X1-X)N/X1
2
-212  l±4 

2I2 - *i
2I0 -2(V + AV) 

211 

where 

(*7) 

Ln 

ll x1
na1(x1)äx1      /° -a 

/     4^rr ix 

xxncr'(xi)dxi 

N/XI2- lx2
= (W) 

and V is the total volume of the wing and unmodified fuselage, that is 

bo 

V = - /   xa'(x)dx (*9) 

-V 
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Equation (V7) integrates to give 

ASf(x)  = - ff(x)  + -~ (llX + lfl0)flf - x2 

«l-2 

3*1x
4 ^ 

2I2 - Zi2I0 + 2(V +AV) 
3/2 

(lx2 - x2)       +H(x) 

(50) 

where 

H(x)  „I    /      ff.(Xl) tan" *ix - I: it 
+   rr 

J(l1
2-^)(x1

2-l1
2)      2 J 

dXn 

1 
ff'(Xl) tan" 

XiX    -    I; 
—   +   TT 

J(li*-*?)(xf-lf)       2 J 
dxi (51) 

• ^If D(T iS the drag of the oriSlnal wing-body combination and DAQ 
is the drag of a body of revolution having the same normal area distribu- 
tion as the modification, then 

2(V + AV) + 1!% - 2I£ (52a) 

On the other hand D        can be written 

D- 're      D* 1 
+ 

1 4 «In2   U 2      72 
1     ^<<1 

2I2 -  ^i2I0 - 2(V + AV) + Ii' } (52b) 

where if 

G(xi,x2) = -J_ ISZR 
Xl-X2 7   Xl2   _   Zl£ (53) 
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D*/q can be expressed as 

£1 = ±- 
0.       2jt 

dxx  /        dx2ffl(xi)<r,,<xi)G(xi,X2) 

-'1 -' 

/   "if 
.7    ' 7     ' 

-«-1 "O 

2   /        dxi     /      dx2a'(x1)ü"(x2)G(xi,X2)  + 

■I' U 

/     dxi    /     dx2a,(xi)a"(x2)G(xi,X2) W 

Limited Indentation On Arbitrary Body 
Fixed Diameter 

As a final example in this section, consider the question 

(vii) Given a wing, a body length, and the area distribution of 
the fore-and-aft portions of a body, what is the intermediate 
variation of fuselage area that has a given area at some inter- 
mediate station, Xi = dx and yields a minimum wave drag for 
the combination? 

Using the same definition for a(x) as is given in equation (^3), and 
again designating the area modification as ASf(x), one can apply the 
same methods used to develop equations (2l) and (k6)  and write the inte- 
gral equation for ASf(x) in the form 

/ 
ASf"(x2)dX2 

xi - x2 

cr"(x2)dx2 
+ < 

7  1  Xi - X2 

A0> -li <-x < di 

Ai, di < x < li 
(56) 

where A0 and 'K1    are constants whose values depend upon the restraints. 



30 NACA TN 3667 

The solution to equation (56) can be written 

ASf"(x)   =   -a"(x)   - 
WU2-x2 

a"(x2) 

■ 7     «    X - X2 
-tO 

\/x2
2 -  Zi2dx2   - 

J x - X2 

x2
2 - U2dx2 - A- Bx Cicosh' 

_x Ii   - xdi 

lilx-dxl 

(57) 

and the three constants A, B, and Ci are fixed by the conditions: 

(l) continuous slope 

/  ASf"(x)dx = 0 

(2) the body area at x = lx    is unchanged 

(58a) 

/  ASf'(x)dx = 0 

and (3) the body area at dx    is given 

/   ASf'(x)dx = ASf(d!) 

(58b) 

(58c) 

The final solution is 

ASf(x)  = -0(x)  + H(x)   - % (x-d1)2cosh-1 l\   ~Xd] 
d lilx-dil 

"Jli2- x2 \ x- dx , Zi2 -dix 

li2-d±
2   L     n    ■ 

a(di)  - H(di) 

^Z^-d!2 
ASfCdi)  + 

(59) 
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where 

Ci = 
21- 

(li2-di2) 
2\2 

/j 2.^2 
ASf (dx) + Of(dx) - H(di) -  

1  o 
2 (Ixdi + I0Z!

2) 
jrli2 

(60) 

and In and H(x) are defined in equations (kd)  and (51), respectively. 

The drag can be expressed either as 

D  DQ-  DAO 

I= T ~ — + ^f^ (6la) 

where Da is again the drag of the original unmodified combination and 
DAC; is the drag of the modification alone, or as 

Dre      D*   |  B2(Z1
2-d1

2)   _   1 

q.       <i +  ' .    kit 
+ -jL (mi - CWU2 -di2J (6ib) 

.V. 

where    D    and Ci    are defined by equations   {^k) and (60),  respectively, 
and    B    is given by 

B = ^(ndiCiV^-d!2  - 2lJ (62) 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Aug. k,  1955 
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